
TRANSIENT THERMAL STRESSES IN

VISCOELASTIC PLATES AND SHELLS

BY W. NOWACKI


Polish Academy of Sciences, Warsaw

1. INTRODUCTION: HYPOTHESES, GENERAL RELATIONS AND EQUATIONS

THE assumption of perfect elasticity in investigations on thermoelastic
behaviour of various solids limits the range of applicability of the solu-
tions to comparatively small range of temperature. Under higher tempera-
tures the solid exhibits properties of creep and the stresses calculated on
the basis of the theory of elasticity differ from the observed, the difference
depending on time, and for high temperatures also on the temperature.

In this paper we shall deal with discs, plates and shells made of a
viscoelastic material possessing a linear characteristic, which constitutes
a better approximation to the behaviour of solids subject to temperature
fields. We assume that the solid is homogeneous and isotropic. Moreover,
we confine ourselves to small deformations and we make the assumption
that all physical properties of the material are independent of t emperature
and the yield limit is not reached. The assumption of independence of
the physical properties of temperature is a significant limitation, for it
contradicts the familiar influence of the temperature on the viscosity
modulus. Though taking into account the latter phenomenon is possible,
it leads to considerable mathematical difficulties.

In viscoelastic solids the transform properties of the stress and strain
tensors are the same as in the case of perfectly elastic solids. The differ-
ences arise only in the stress-strain laws(1,2,6)

P (D) s = P 2(D) eij  (1.1)

P3 (D)  —  P4 (D) (Ekk 3at (1.2)
where

1 1
ij au — -3 akk 4-5; j, ei • rkk ij (1.3)

are the deviators of the stress and strain tensors, respectively, and T de-
notes the temperature. The quantities P i(D), i =  1,2,3,4 appearing in the
relations (1.1) and (1.2) constitute linear differential operators

Ni ari) 0,  i =  1,2,3,4 (1.4)
0

60' [94 ]
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an
where  Di' = 	  denotes the derivative of order  n  with respect toat"
time, and the coefficients al") are constants. In the case of a perfectly
elastic body the operators  P,(D)  contain only the first term of the series
(1.4). Namely we have

= 1,  aP)  = 2,u,, aP) = 1, aP) =

where  4u0 is the shear modulus and  K,  the compression modulus.
The system of relations (1.1)-(1.2) can be written in a more explict

form

P,(D)P,(D)aii =

[P1(D)P4(D)-132(D)P3(D)] ekk—Pl(D)P,(D)a, TI (1.5)

Besides the model of the viscoelastic solid described by the relations (1.5)
frequently models of continuous spectrum are used, namely the Boltzmann
and Biot models(3.4)

ae,  .
= 2 f  a(t T)  at, dr+

o

aEK,,
(5ii jb(t T)  , [3b(t T)+2a(t—T)lat

(37'1dt-  (1.6)

O
OT




This relation defines a viscoelastic solid free of stresses at the initial instant.
a(t), b(t)  are here functions of time which for the perfectly elastic solid
reduce to the Lamé constants ,u0,

Let us perform in the relations (1.5) and (1.6) the Laplace transfor-
mation defined as follows:

CO

f(A-r,p) = e-P'f(x„ t)dt

Thus we arrive at the relations

2-14-e-u +(k„— Ty)  ij  == 1,2,3 (1.7)

where

- P2(p) P1(P)P 4(13 ) - P2 ( I))P3 (p) - -du= 2P1(1,)' ).(P)3P1(P)P3(P)
y = (2,u±3A)a, (1.8)

for the stress-strain relation expressed by (1.5), and

= Pa(p), = Pb(P) (1.9)
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for the Biot model of viscoelastic solid. The corresponding relations for
a perfectly elastic solid have the form

= 2y,,Tr (20Ta  T) 5 (1.10)

Consider first the quasi-static problem. In other words we assume
that the temperature changes are slow and therefore we neglect the influ-
ence of the inertia forces on strains and stresses. Substituting into the
equilibrium equations

— 0 (1.11)

the stresses in accordance with the relations (1.5) and expressing the
strains by the displacements by means of the formula

1
=

(1.12)

we arrive after simple transformations at the displacement equations


Ll(D)11I,KK4 L2(D)u = L3 (D)a, T, j —  1,2,3 (1.13)


where

L,(D) = P2 (D) P,(D), L2 (D) = —1[21)4(D) P,(D)± 1),(D)P3(D)] ,
3

L3(D) = 2P4(D)P1(D)

The equations (1.13) are to be completed by boundary conditions

= pi (1.14)


in the case of loading of the boundary, and

u = gi(x„ t) (1.15)

in the case of kinematic boundary conditions. We perform the Laplace
transform on the displacement equations (1.13) and on the boundary

 conditions, assuming that for

t 0 the viscoelastic solid is in natural
state, i.e. the displacement and stresses vanish. In other words we assume
that ti,(x„ 0) = ii,(xr, 0) = 0, and the higher derivatives defined by the
order of the operator  Pi(D).  also vanish. Thus we arrive at the system
of equations

1,2,3 (1.16)

the corresponding equations for a perfectly elastic solid having the form

(Ao+YoNtrci — Yo T,i (1.17)

A comparison of the equations (1.16) and (1.17) indicates that the equa-
tions for the viscoelastic solid are derived by replacing the constants 1u0,
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Ao in the displacement equations of the perfectly elastic solid, by the quan-
tities  Tt , 3  which depend on the parameter of the Laplace transformation p.
This analogy is called the elastic-viscoelastic analogy. The following
procedure for solving the displacement equations is evident. We solve
the quasi-static equations for the perfectly elastic solid and in the solution
thus obtained we replace the constants [to, À, by  Tc,Ï. and apply the inverse
Laplace transformation; this completes the solution of the corresponding
viscoelastic problem, in the quasi-static case.

Owing to the elastic-viscoelastic analogy we can use numerous solutions
of thermoelasticity to obtain the solutions of the corresponding visco-
elastic problems. This analogy was announced by Alfrey(5) who employed
it in determining the stresses in a viscoelastic solid, produced by external
loading. The analogy was extended by Lee) to the viscoelastic bodies
in which the condition of incompressibility is not valid. Alfrey's analogy
was first made use of in thermoelasticity by Hilton"), and Sternberg who
disregarded the condition of incompressibility(2).

The solution of the system of equations (1.16) can be represented in
the form(8)

i(x , p) = T(e,, 13)6 d V i = 1,2,3 (1.18)
(v)

Here  0,('„ x„p)  denotes the Laplace transformation of the dilatation at a
point (er), produced by an instantaneous concentrated force acting at
a point (.7cr)in the direction of the xraxis, in a viscoelastic solid of the
same shape as the solid under consideration, under the assumption
that  T =  O.

The corresponding solution of the system of equations (1.17) for the
perfectly elastic solid has the form

	

TO)(x,, p) = Po J T(„P)0:°)(„ xi)  d  V i =  1,2,3 (1.19)
(v)

Here 010)(e„ xr)  is the sum of normal stresses at a point (er) of the per-
fectly elastic body, produced by a concentrated independent of time force
acting in the direction of the xraxis at the point (xr).

Differentiating (1.18) we obtain

(x„ I)) = = J T(E„p)Ou(Cr,xr, p)d  V (1.19)

Here, for  i j  the function Ou denotes the dilatation at the point (er),
due to the action of an instantaneous cross of shear situated at the point
(x,) of the plane xixi. When i = j the function 0il is the dilatation at
the point (CO, due to the action of an instantaneous double force applied
to the point (x,.) in the direction of the xi-axis.
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The transformation of the dilatatione(x„ t) at the point (x,) of a viscoelastic
body, due to the action of a temperature field, is given by the formula

T(E„P)6(„,x„, p) dV (1.20)

= a ) T(e,p)A(E„.1-„p)d V

Here 0(er,.\-„t) denotes the dilatation at the point (Er), due to the action
of an instantaneous centre of pressure at the point (x,.); A(E,.,.x„t) is the
sum of the normal stresses at the point (i), due to the action of an in-
stantaneous centre of pressure at the point (x„).

By means of the above method of solution certain general results may
be obtained.

First, we shall prove that the change of volume of a viscoelastic body
free of tractions on its surface, due to the existence of a temperature field,
is independent of the rheological properties of the body.

The change of volume is given by the integral

v = 1“xr,p)dVi = a, T(&.,p)dV 217(e„x„p)dVi, (1.21)

d V1= dx„ dx,, dx,

The second integral constitutes the sum of stresses at the point (&.), due
to the action of centres of pressure distributed uniformly over the volume
of the body, and is equal to 3. Hence

zlV T(Er,t) dV (1.22)

Taking into account that

- +3a, T, 3 " au (1.23)
§"

=

and making use of the relations (1.21) and (1.22) we have

s(A-„t)d V,.= 0 (1.24)
v,

The change of volume due to the thermal stresses vanishes; there remains
only the change due to the temperature. It is easy to verify the validity
of the relations

rii(x„t)d V1= ceik f T(.x„t)d V, (1.25)
vi
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Let us next consider a viscoelasticbody with vanishing displacements
on the surface. Assuming that the temperature To is constant inside the
body we arrive at the following formulae for the deformations:

	

p)
=Tf

d V (1.26)

These deformations vanish, since the integral on the right-hand side
denotes the increment of the volume of the body, due to the action of the
uniformly distributed crosses of shear  (i j)  or double forces  (i = j).
It follows from the formula (1.7) that

(1.27)

The determination of stresses in an infinite viscoelasticspace is especially
simple.

We now prove that the following simple relations occur between the
displacements  u,(x„ t)  and the displacements  up)(x„ t)  of the viscoelastic
body°):

=  f(p)PUP)(yr,  p),  f  (p) Y(2)±2,u0) 


YoP(2.+2)
and

u,(x,., t) = f f (t—T) tit())(x,., T) dr
OT

where the function f(t) describes the rheological properties of the visco-
elastic body.

Let us observe that the relations (1.18) and (1.19) can be represented
in the formo)

17i,(x „ p) = — T($,.,p)U,(x„ E p) d V (1.130)

F41°)(x„ —"A P)(-4°)(xv, d V (1.31)

Here  U,(xr, $„ t)  denotes the displacement of the point  (x,.)  in the direction
of the xi-axis, due to the action of an instantaneous centre of pressure
situated at the point (&.). It is known from the theory of elasticity that

1 1
U1°)(x,., — 	

(
440 R),

180= A0-1-2y0

where

(1.28)


(1.29)

R = [(xi— ± (-1C2 $02 -1- (x3 $02
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In accordance with the viscoelastic analogy we have

The relations (1.28) \Ai11 be called the correspondence relations principle.
They enable us to determine the displacements after carrying out the
convolution 1.29, if the displacements uP) and the function f(t) describing
viscoelastic properties of the solid are known. Making use of the cor-
respondence relations (1.28) and the equations (1.7) we represent the
thermal stresses in a viscoelastic solid by the relation

t a,(0)
aEgic)

ajj(z„ t) = I (t --r) (5ij [k(t  ()T— 1(t  a, dt (1.32)
0

where

h(t) = a-W), k (t) = i(21f), = a-' (7f)

The validity of the relations (1.28) follows from the comparison of the
formulae (1.30) and (1.31). Moreover, this comparison indicates that the
transform of the function T can be expressed in terms of the function
(t, as follows:

(1.33)
where

1411.7rJ R ' 13
(1.34)

On the other hand we find that (1.34) is a solution of the Poisson equation

4),kk ru 7' • (1.35)

In fact, introducing (1.33) into the displacement equations (1.16) and

integrating with respect to A-1 we arrive at the equation (1.35). The function

is the so-called thermoelastic deformation potential. In terms of this
function the stresses au can be expressed as follows:

	

— 2ft (4) ); bki4), kk) j = 1, 2, 3 (1.36)

Comparing the equation (1.35) with the corresponding equation for the
viscoelastic body find that

t) = Ig(t —r)  —00)dr, (1.37)
6

where

1 	 ( 1

470 R) ,

( pno
ni
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The stresses au in the viscoelastic body are given in terms of the function
Om  for the linear-elastic body by the relation

()ow
ai; (xr, t) = 2  [diaj— Su V2] f  r(t T) 	 dr,

o

(1.38)

where

	

(p) = r (p) 	
Pm()

If the changes in time of the temperature field are not sufficiently slow
the inertia forces cannot be neglected. In this case the equations of motion
have the form

	

0v ; = ell, 1, 2, 3 (1.39)

Introducing into these equations the relations (1.5) we obtain the dy-
namical equations

Ll(D)ui,"-FL2(D)uK,Ki = L3(D)arT ,i+ L4(D)  ,  i =  1, 2, 3 (1.40)

where

L,(D) = 2P1(D)P3(D)

Applying the Laplace transformation to the equations (1.40) and comparing
it with the appropriate equation for a perfectly elastic solid we discover
that in this case also the elastic-viscoelastic analogy holds. It is however
impossible to establish any correspondence relations as it was done in
quasi-static problems.

In an infinite viscoelastic solid, introducing the potential 4 we reduce
the system of equations (1.40) to the equation (10)

,KK— P2-d2(P) = hT (1.41)

where

2+2Ti

The transformations of the stresses assume in this case the form

= 2rt  (did.; — Su  V2)4)H-p2e4) (1.42)

The corresponding equation for the function 4)(°) in the case of a per-
fectly elastic body is the following:

= noT (1.43)

a2 = 	
° 20 +2,a,
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The transformations of the stresses have a similar form

_ 2p0(,61_6072)0(0)±p2e
( 0) (1.44)

It follows from a comparison of the equations (1.41) and (1.43) that no
correspondence relations are valid in the case of the dynamical problem,
for the functions (T) and 0).

2. THERMAL STRESSES IN DISCS

Consider a disc of constant thickness  h:  situated in a non-stationary
temperature field  T(x1, x2, t)  satisfying the heat conduction equation(11)

= — Q x  (2.1)

at
Here z =  2tec  where 2 is the conductivity coefficient,  c  the specific heat
and is the density. Furthermore,  Q ea where W is the amount
of heat generated per unit time and volume by the heat source.

0 denotes the temperature of the surrounding medium and a = 22112h
where 2, is the external conductivity coefficient. The equation 2.1 concerns
the case of heat exchange on the planes x, = + h/2 bounding the disc.
If the disc is thermally insulated on these planes it should be assumed
that 8 = 0 in the equation (2.1).

Consider first a disc of perfectly elastic material. Expressing the stresses
ot due to the temperature field by means of the derivatives of the Airy
function  F

= (V611—.3,61)F j =  1 ,2 (2.2)

and introducing these expressions into the compatibility conditions we
obtain the following differential equation for the function F,u2):

F-1-afE0VT =  0 (2.3)

E0  denotes here the elasticity modulus and a, the coefficient of linear
thermal expansion. If the boundary of the disc is free of tractions the
boundary conditions for the equation (2.3) have the form  F = F„ =  0
where  F„  denotes the normal derivative of the function F.

Let us observe that solution of the equation (2.3) can be represented
in the form

F(x1, x2, i) = atE, f f T($1, t)V2F*(x,  , x2, , $2) d1 c:12 (2.5)
(./4)
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where the Green function  F*  satisfies the differential equation

Vt  F* -L 6 (A -1— 1) 6 (x2— ) =  0 (2.6)

and the same boundary conditions as the function  F.  For a multiple-con-
nected disc with the contours  si, s2, sn, it is convenient to use the equa-
tion (2.5) in the form

F = u(E„ I F*VfT  d,;1 (14'2+ J (TF: F*T,n)ds} (2.7)

For a simply-connected disc which is free of tractions on the boundary
the curvilinear integral vanishes

F = a, E, F*  Vf Tc1;1 (21,2 (2.8)

Thus, if the temperature field is stationary and no heat sources are present
inside the disc, and moreover no heat exchange occurs on the planes
x, = + h/2, then vf T= 0 and hence also  F =  0 at all points of the
plate. In this case therefore the disc is free of stresses. This statement
constitutes the celebrated theorem of N. I. Muskhelishvili(13).

We proceed to the determination of the thermal stresses  au  due to
the action of a temperature field  T  in a viscoelastic disc, by means of the
Airy function  x.  Namely we have

= (V?  j —  1,2 (2.9)

Making use of the elastic-viscoelastic analogy we represent the differential
equation for the Airy function in the form

Vti+citEv1T  0 (2.10)

where

z = Je- Ptz(xj, x2, t)dt , E = e--P(E(t)dt

and

E(p)
7432+2/2)

Comparing equations (2.10) and (2.3) in which the Laplace trans-
formation has been carried out, and assuming that the boundary
conditions are homogeneous we obtain the relations

=  f(p)PF; =7(1,)13afr (2.11)

where

Icp)E(p)E0(P)
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Thus, we have arrived at the correspondence relation. Inverting the Laplace
transformation in the relations (2.11) we have

xCvi,x2,()= f f(t—r)-7 F(xi,  x 2, r) d-r (2.12)

, (0)11(xi , ,  t) = f f(t —r)—(7. • ( xi,  .172,-r)dt 1,1 1 ,2 (2.13)
62  Li

o

The problem of determination of the function z is therefore reduced to
carrying out the convolution (2.12) which contains the known function
F of the corresponding perfectly elastic problem, and the function f(t)

describing the viscoelastic properties of the disc under consideration.
There is no difficulty in finding the function f(r). Thus, for the Maxwell

solid where

1

	

P1(p) , P2(P) = 21101), 133(P) = 1, P4 (n)=  3K0

we have

1 E„
----- f(r) —

P+ xi 310

Here 0 =  vu,  is the time of relaxation and ?I is the viscosity of the

material. Taking into account (2.13) and integrating by parts we obtain

, 1

	

au = f  or (xi, xo,r) dr,  i,j  = 1,2 (2.14)

For the Kelvin solid

	

(p) = 1, P2(P) = 2/10(1+0*p), P3( 1, P4(p) = 3K0

whence

1 	 c
f(1))P

vo)3
	 ,-=

1-2v0

0* denoting the retardation time; the equation (2.15) assumes the form

o)au =(1±c)---cle-". t f earalp (x1, x2,r) dr
0

(2.15)

If the temperature field is stationary the equation (2.10) takes the form

VfZ+a r—V2T = 0 (2.16)p
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Comparing the latter equation with equation (2.3) we find
_

PX 7(p) (2.17)

Hence

7( , x2, t) =  f F (x1, x2) , (x1, x2, = f (t)of (x1, x2) ( 2.17')

For the Maxwell solid

au (xi , x2, () = (V (xi , x2) (2.18)

while for the Kelvin solid

	

cri;(xi.,x2, t) = (1+ ce-'20 or(xi, x2) (2.19)

The determination of stresses is especially simple in the case of an in-
finite disc. In the disc of perfectly elastic material

a tp 2po(ajar_ bii v2) ito i ,j _ 1 ,2 (2.20)

where0(0) is the thermoelectric displacement potential yielding the displace-
ments according to the formula u • = 0). The function Om satisfies
the Poisson equation

	

Zile) = 11107' , 7710--= (1+ vo)at (2.21)

Making use of the elastic-viscoelastic analogy we express the Laplace
transformations of the stressesau in the viscoelastic disc by means of the
relations

&Li= bilq) j = 1 ,2 (2.22)

the function 0 being the particular solution of the equation

V20 = thy, th = (1+-Oct, (2.23)

A comparison of the equations (2.20) and (2.21) after applying the Laplace
transform, with the equations (2.22) and (2.23) yields

2(a — 5 uq) = 1,2 (2.24)

where

tp(x1, x2, t) g (t Om (xi, x 2 , -t) dx
0

aT
(2.25)

and

g(t) = a1(p) (p) "Fun

Pmo

Consider the action of an instantaneous heat source situated at the
origin of the coordinate system in the viscoelastic disc. Assuming that
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the disc is thermally insulated on the planes x3 = + h/2 we have the
following solution of the equation (2.1):

r2 1
T(r ,, t) — 	

47txt  exp 4%1
r = (4+4)112(2.25)

Solving (2.21) we have Om

	

(r , t) — Qm0  [lnr 1  Ei ( r2
2ar 2 4xt )1

where

e'
—Ei(-27) f 17. du

Equation (2.25) yields the function

1 r2

	

=
2Q:1f

g(t -OPT)  ln r+ exp 	 )] drztxr0

It is found for the Maxwell solid that

1dr (2.26)

r2
exp (— --

Qtto1 rv  = e-Kihlnr+ —2f
4x 


2.7r

where

E0
%I -- 319120

while for the Kelvin solid

qu 1o  {1nr
2

Ei( 	
4xt

r2
+ ce-xo lnr +

C f2
t] (2.27)

3
(1— 2vo)'

2(1+v,)
c

1-2v,

The function tp being known we determine the stresses in accordance
with the formulae

arr= Cr(p9 —2V)rr (2.28)
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In the case of a stationary temperature field

	

= s(t)0(°) ; ct = f(t)(1) (2.29)
where

s(t) = a-1 ( m  f(t) = a-1 V-E 0)
in, no)

Let us observe that the plate analogy may be employed in the deter-
mination of the function from the equation (2.10). Consider a perfectly
elastic plate of the same shape as the disc under consideration. Let the
plate be clamped W = W = 0 on the boundary and the loading vary-
ing in time. The differential equation for the plate deflection assumes
the form after carrying out the Laplace transformation

— (2.30)
No

where N, is the bending rigidity of the plate. Comparing the equations
(2.10) and (2.30) and assuming that the boundary of the viscoelastic disc
is free of tractions (z = z n = 0) we discover that when 1,, w

(x1 x2, = —at NoE(P)V?T(xi p) (2.31)

In kiew of the analogy between the differential equations and the bound-
ary conditions a solution of the equation (2.10) may be replaced by the
solution of the problem of bending of a clamped plate loaded by the load
(2.31). This analogy is successfully being applied in thermoelasticity prob-
lems( 14,15).

We now proceed to the investigation of the dynamical problem of prop-
agation of stresses in a semi-infinite disc, produced by a sudden heating
of the disc boundary. We assume that the disc is thermally insulated on
the planes x3 = + h/2. The boundary condition for the temperature
being T(0, t) = T0H(t) (H(t) is the Heaviside function) and the initial
condition T(x1, 0) ---- 0 the temperature field is given by the expression

	

T(x1, t) =  T0erfc , x, > 0 (2.32)
zIxt

Performing the Laplace transformation in (2.32) we have

T(x„ p) = -Tp"exp (—x51 pIx) , x, > 0 (2.33)

or

27.0 r a sin a x, da
T(x„ p) = (2.33')

a2-Fplx
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In the problem under investigation the equation (1.31) for the thermo-

elastic displacement potential is reduced to the form

(i) 17—P2a27/5= = (1+i-)at (2.34)

for we are dealing with a one-dimensional plane problem. The solution
of the latter equation is representable in the form

2T0 /'• a sin ax da
— 	 (a2+p/x) (a2 +p2 Er2)

or after integration

TerTi 


p (p2).2 —pc-1) [e—P/K — e'  "- ]

For x, = 0 we have ck  = 0 and since d„ = p24, also a11(0,  p) =  0, which
was to be expected.

Consider now the viscoelastic solid of M. A. Biot. We assume that a(t)
and b(t) have the same relaxation time e---1and are expressed by the simple
exponential formulae

a(t)poe-et b(t) = yloe-ct

Since

2:Cc-FR

2(2-!-Tu)

where a, —   , let us represent the function in the form
20+ 24a0

p20 Toinop2
P  K — e Pa°V P(P±e)), = —s >  0,,  E >  0

1

Grg(P—i3)
(2.37)

Inverting the Laplace transformation in the equation (2.37) and intro-
ducing the notations

_vt t 2=_- T ==  a =  var,
xat

we obtain
620 T,m, r

t2 	 [h (7 ; 0],

where

1

	

f ,.( , r ; a) = —2e(h1-Œ[e---4 VI-. erfc ( 1, 7-( 1--a)) -{-
2 1/-77

- $ 
+ e i--
4 1 Œ erfc( _ , 1 7(1—a) )1

2 j  T

(2.35)


(2.36)

111 a, — m, =  const - 2 2P+8 

a = Co IZ= it0

81
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al-a) -( 21- 2

g 1($, ; a) = e e

( I 	

	

a I. - /(1- 2 ) 2 ' '
	 H(71— 0

62,1,
The change in time of the stress au= 	 is described for x< ,; by the

dt2
function f1 , and for r > by the functions  f,  and g1. The function f, is
of diffusional nature, while  g,  is of nature of a longitudinal wave the front
of which moves with the velocity  c = 1/4 For r = the following jump
in stresses occurs:

(111(e, r--; —a11($, r+ ; -

cr;
T0ni00

e2

It depends on a and varies with the distance x1.
On the boundary of the disc we have

= 09 (122 — (133 = —2/t0m0 Toe  iv

As a -+ 0, i.e. for a perfectly elastic body the above solution reduces
to that derived by V. I. Danilovskaya1 '6).

3. THERMAL STRESSES IN PLATES

Let there exist a temperature field  T x2, t)  in a plate, where
the function r satisfies the equation

V2-r—
1

—T—fltr—fl) = —qhe (3.1)

(12-1 0 —02Here /32  =0  h  ' 01 is the temperature of the surrounding

medium below the plate and  02  that above the plate. The equation for
the deflection of the perfectly elastic plate, due to the action of the
temperature field  T = x3T(x1, x2, t)  has the form"

	

W+moVIr = O, m0 = (1+ ro)a, (3.2)

The bending and torsional moments are given by the formulae

	

= No{(1 vo) w ,  114 Ai[v042w +(I  vo)at-t]l i , j -=-1,2 (3.3)


The solution of the equation (3.2) can be represented in the form

-

—
.

e
2



112 2

iv (x1, x2, = mo 1 1 'gel, ;2, t)V2w* (x1, x, ; 2)del d;. (3.4)
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or else

it. (x„ x2, t) = 1,10 1 1 iv* Vtrcl$2+ f (rw*-or ) ds
(F`)

(5. 19 • • • 9 SO

in the case of a multiple-connected plate with contours .5.1, , s„. The
Green function appearing in the equations (3.4) and (3.5) satisfies the
equation

vlw*-F6(xj—i) (x2— ;2) = o (3.6)

and the same boundary conditions as the function w. In the case of a
simplyconnected clamped plate (w* = wn* = 0) the curvilinear integral in
the expression (3.5) drops out. In the case of a stationary temperature
field and absence of heat sources and heat exchange on the planes

x, = + = 0) we have w = 0 at all points of the plate; then

M11 - M22 - -NOMOT

Making use of the elastic-viscoelastic analogy we represent the equation
for deflection 1V of the viscoelastic plate in the form

	

vpv-h-riivF= o, W = e--Pt1 dt (3.7)
'0

The transformations of the bending and torsional moments are given by
the formula

j = 1 ,2 (3.8)

Comparing the equations (3.2) and (3.7) we can establish the corre-
spondence relation

= — w (3.9)
mo

whence it follows that

,
W (x1, x2, t) = h (t )  an wkx1, x2, n) (3.10)

o

Here h (t) is the inverse Laplace transformation of the function —  Fri

E k  1 +v 

	 7(P) = (p)   a,

pEo pE, 1 pE0 1—v

Prno
Introducing the notations

61°
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the inverse transformation of the moments takes the form

- I—No (1 — va) Ik (t —ii) a- w ,
,

o

+[1(t 0 viw-i-r(t ii) I, chi i , j = 1 ,2 (3.11)
aiy an i I

a at' 11

If the temperature field is stationary then T = X3 T (Xi, X2)

W(X1, X2 , t) — h (t)w (x 1 , x2) , h(t) = a-1  rit
 )

(3.12)

and the bending and torsional moment take the form

= — No(1— vo) {k(t)iv, [1(t)V2w r (Or] ii) , = 1,2 (3.13)

Consider vibrations of plate due to the temperature field T = X31" (X1 , X2 t).

The influence of the inertia forces will be especially great if the plate be
suddenly heated. For the elastic solid the equation for the deflection has
the form

oh ..
vlw+ w+movl r = 0 (3.14)

No

The solution of this equation may be represented as a sum of two parts,
the quasi-static w, and w, accounting for the influence of the inertia
forces":

V, w1+ ni0V/T = 0

ph ..
w.,(-Lw1) = 0Vfw 2 -No (3.15)

After applying the Laplace transform to the above equations, assuming
that w, = (x1, x2, 0) = ii)2(x1, x2, 0) = 0 we obtain

N7/17,-71+ln, 0

V111-;2 [(1' P2 + ii-'1132— Pw1 (x1, -Y2 0) —11.'1 (-Y1 -Y2 0)] =No 2
(3.16)

Making use of the elastic-viscoelastic analogy we obtain for the deflection
W = W1+ W2 of the viscoelastic plate the system of equations

V/ W1-HiTiVrc = 0

— oh —
[p2 W2 H-p2Wi—p W1(.1,7 , x2, 0)— 14./1(x1, x2, 0)] = 0 (3.17)

pin0

To solve the system of equations (3.17), we may employ orthogonal and

normalized system of eigenfunctions W„,„(Xi , x2) of the elastic plate of
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the same shape and the same boundary conditions. The eigenfunctions
satisfy the equation

0)2
VfWn. mn e hwn „, -= 0 (3.18)

No

Assuming that the solution of the first equation (3.17) may be represented
by the series

W1(x1, x2, t)= Y A nn,(t) w wo(x„ x„) (3.19)
n,m

and expanding the function IV0(x1,x2,p) into a similar series
,a)

W72(xl, ,C2,p) — Burn (P)W nm()CD x2) (3.20)
n,  rn

we arrive at the following form of the solution of the system of equations
(3.17)

co
-77 q,„, Aom-÷ pA„,„(0)- A.o„,(0)

	

W(Xl, -172, = 'inn(X.1> X2)
tt,m t-Ya)nm

p_ N( )
Here y = . Inversion of the Laplace transformation encounters

No
considerably difficulties, even for simple models, in view of the complicated
structure of the function y. A great simplification results if we treat the
solid as incompressible Ca,= l, K, = co).

4. THERMAL STRESSES IN SHELLS

We shall confine ourselves to shallow shells of double curvature, basing
the theory on the equations of the engineering theory of shells of
V. Z. Vlaso08), and making use of the elastic-viscoelastic analogy

1
V1vT)

NV`-'.  — --,WV2f (4.1) k

Vb—V- _1 V1(7) = arV2T-0 (4.2)
fh

We have assumed here that the temperature may be expressed by the
approximate relation

T(a,, a2, a3, t)  — To (a1, a2, 0 + a,2 (a„ a, T) (4.3)

which means that the temperature distribution in the direction of the
a3-axis of the curvilinear coordinate system is linear. The differential
operators appearing in the equations (4.1) and (4.2) have the form

[ a lc° A2 a f)- k a0 (ko   AA I  a.-, f

	

A1A, 1 - A, 1 - /12 -

v i : -

A

1  [A IA 2 A ,1 (A 1 a a
'2 j , A, '1 kA,uif I +" A, "j

A

i] 	  a ' acc,' a2 aa2

(3.21)
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Here A1(a1,a2), A,(a„a„) are the coefficients of the first fundamental

quadratic form of the middle surface of the shell k, = -1— k, =  1
R,

denote the curvatures of the middle surface in the directions a, and re-
spectively, of the curvilinear orthogonal coordinate system. Let us observe

that N =
12(1--i-j2)

	 and hi = (1 +f))a, depend only on the parameter

p of the Laplace transformation.
The knowledge of the functions i,-93 is sufficient for determining the

transformations of the forces Nu and the moments Mu
•

Thus

and

where

1 1
= 62(14 62-0)A AI1A2 61A2'(U)

(4.4.)

(4.5)

(4.6)

A,

11 I 1A 1A

N22 IA, A2A2 29'

11A1 1A A,4 	 A

1A2 991N12 A u1u24)A U2/11u19) A U1212U21 2

=

M22 = —N(22+-177C11—tn-i)

M12 — —/V(1179TC12

•= A1A2c) 2A'A2
c)211)

1
— 62 ( 1 a )

6,212-15,—4422A11212 A,—A-- 21,

-77C12 1 	 (a1arov—  1  62A1a1w—  1  61,42,3,tiT,)
A,A, A, A2

The differential equations for the perfectly elastic shell have the form

V431),— -1— V2q5, = —moV2i
No

—1--V ipo = v2-T-0
E0h

Comparing the equations (4.1) and (4.2) with the equations (1.7) and
(4.8) we observe that no simple correspondence relations occur for the
functions and i,.q5o. In the general case we have to solve the system
of equations (4.1) and (4.2) completed by the appropriate boundary
conditions, applying to the solution thus derived the inverse Laplace
transformation.

(4.7)


(4.8)
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Consider a shallow shell of double curvature, of positive Gaussian
curvature, supported on the rectangle with sidesa, b. In this case we may
assume that the first fundamental quadratic form is identical with that
for the plane, i.e.

ds2 = dxl-Fdx!

Moreover, we assume that the curvaturesk„ k2 are constant and positive
in the region of the shell. Thus

v2 = 4+ ,4 k 2 ald k, 4

Eliminating from the equations (4.1) and (4.2) first the function T) and
then the function W we arrive at the system of aquations

X4V1W7= N V V21-0—WIV6i-- (4.9)

v8,79±):4‘1,79 = EhatV6r 0+ EhtTIV  (4.10)

— 12(1-4-2)À4

Introduce the auxiliary functions  -0* and which satisfy the differential
equation

(v8+ AN ) ff*, (5(x1- 1) 6(x 2 2) (4.11)

and the same boundary conditions as the functions and i, respectively.
The solution of the equations (4.9), (4.10) may be represented with the
help of the appropriate Green functions in the form

2 P)M* (x1;  x2 ; 2,P)1d$1 d$2 (4.12)

(X1 9 X29 /3)

	

+ hi ( , $2, /3)9 V2r9* (x1, x2; $1, d1 c12 (4.13)

Consider the particular case To = 0, T = r(t) in the whole region of the
shell, assuming that the shell is simply supported. In this case the solution
of equation (4.11) is furnished by the functions

h2

iv* 4
= yab

n,m

sina1 sin fl„,$2


Dnm
sin ar,x, sin (4.14)

where

an =
na

a -

inn

Ann= (4,+g)4+).-4(k2a,2,-Ekin )2
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Inserting (4.14) into equations (4.12) and (4.13) and integrating we
obtain

16mf (an2 +IV3 

w (x1, x2,11) =a b  ;77,,/3,„

nm

sinanx, sin/3„, x,(4.15)

ra

--(i'(x1, x2, /3) —
16Ehfff  (4,-H3L)  (41c,-

sinanxi sin/3„,x2ab

It can easily be verified that the boundary conditions

= w = = — 0 for x, = 0,a

0 for x2 = 0,6Tt = w M22 = N22 =

have been satisfied. Expressing for the given model of the viscoelastic
solid the quantities  m, E,  ;14in an explicit form and inverting the Laplace
transformation we arrive at the required functions w and 99.

A considerable simplification results in the case of an incompressible

3

	

body (K  oc or v
= 2

—1. In this particular case 2' - -ah2 2 "

(P)—  - and Dnm is independent of the parameter p. We find from

2Pi(P)

equations (4.9) and (4.10)

3P2(P) 

99= 2E0  P1(p)9'°

where wo, (to denote the solution for the corresponding shell of perfectly
1elastic material, under the assumption v, = - •
2

Analogous relations (4.18) are also deduced for a shallow cylindrical
or spherical shell.
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